$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$ is equal to$......$.
$3$
$2$
$4$
$1$
$\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ = $
The value of $\tan 7\frac{1}{2}^\circ $ is equal to
Suppose $\theta $ and $\phi (\ne 0)$ are such that $sec\,(\theta + \phi ),$ $sec\,\theta $ and $sec\,(\theta - \phi )$ are in $A.P.$ If $cos\,\theta = k\,cos\,( \frac {\phi }{2})$ for some $k,$ then $k$ is equal to
If $\sin \alpha = \frac{{ - 3}}{5},$ where $\pi < \alpha < \frac{{3\pi }}{2},$ then $\cos \frac{1}{2}\alpha = $
If $\alpha + \beta - \gamma = \pi ,$ then ${\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma = $