Trigonometrical Equations
normal

$cos (\alpha \,-\,\beta ) = 1$ and $cos (\alpha  +\beta ) = 1/e$ , where $\alpha , \beta \in [-\pi , \pi ]$ . Number of pairs of $(\alpha ,\beta )$ which satisfy both the equations is

A

$0$

B

$1$

C

$2$

D

$4$

Solution

Given that $\operatorname{cost}(\alpha-\beta)=1$ and $\cos (\alpha+\beta)=1 / \mathrm{e}$

where $\alpha, \beta \in[-\pi, \pi]$

Now $\cos (\alpha-\beta)=1 \Rightarrow \alpha-\beta=0$ or $\alpha=\beta$

$\therefore $ $\cos (\alpha+\beta)=1 / e \Rightarrow \cos 2 \alpha=1 / e$

$\because 0<1 / \mathrm{e}<1$ and $2 \alpha \in[-2 \pi, 2 \pi]$

Therefore, there will be four values of $\alpha$ in

$[-2 \pi, 2 \pi]$ and correspondingly four values of $\beta$

Hence, there are four sets of $(\alpha, \beta)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.