6.Permutation and Combination
normal

$\mathop \sum \limits_{0 \le i < j \le n} i\left( \begin{array}{l}
n\\
j
\end{array} \right)$ is equal to

A

$n^22^{n-1}$

B

$(n^2 -1)2^{n-1}$

C

$(n-1)^22^n$

D

$n(n-1)2^{n-3}$

Solution

$\sum\limits_{0 \le i < j \le n} i \left( {\frac{n}{j}} \right) = \frac{{n\left( {n – 1} \right)}}{2}\sum\limits_{k = 0}^n {\left( {\frac{{n – 2}}{k}} \right)} $

$=\frac{n(n-1)}{2} 2^{n-2}=n(n-1) 2^{n-3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.