$f : R \to R$ is defined as
$f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2} + 2mx - 1\,,}&{x \leq 0}\\
{mx - 1\,\,\,\,\,\,\,\,\,\,\,\,\,,}&{x > 0}
\end{array}} \right.$
If $f (x)$ is one-one then the set of values of $'m'$ is
$( - \infty ,0)$
$\left( { - \infty ,0} \right]$
$\left( {0,\infty } \right)$
$\left[ {0,\infty } \right)$
The domain of the function $f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}$ is (where $[x]$ denotes the greatest integer less than or equal to $x$ )
If function $f(x) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right)$; $( - 1 < x < 1)$ and $g(x) = \sqrt {3 + 4x - 4{x^2}} $, then the domain of $gof$ is
Greatest value of the function, $f(x) = - 1 + \frac{2}{{{2^x}^2 + 1}}$ is
Range of $f(x) = \;[x]\; - x$ is
Let $f (x) = a^x (a > 0)$ be written as $f( x) = f_1( x) + f_2( x)$ , where $f_1( x)$ is an even function and $f_2( x)$ is an odd function. Then $f_1( x + y) + f_1( x - y )$ equals