$f : R \to R$ is defined as
$f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2} + 2mx - 1\,,}&{x \leq 0}\\
{mx - 1\,\,\,\,\,\,\,\,\,\,\,\,\,,}&{x > 0}
\end{array}} \right.$
If $f (x)$ is one-one then the set of values of $'m'$ is
$( - \infty ,0)$
$\left( { - \infty ,0} \right]$
$\left( {0,\infty } \right)$
$\left[ {0,\infty } \right)$
Let $x$ denote the total number of one-one functions from a set $A$ with $3$ elements to a set $B$ with $5$ elements and $y$ denote the total number of one-one functions from the set $A$ to the set $A \times B$. Then ...... .
Let $N$ be the set of positive integers. For all $n \in N$, let $f_n=(n+1)^{1 / 3}-n^{1 / 3} \text { and }$ $A=\left\{n \in N: f_{n+1}<\frac{1}{3(n+1)^{2 / 3}} < f_n\right\}$ Then,
If $0 < x < \frac{\pi }{2},$ then
The domain of ${\sin ^{ - 1}}({\log _3}x)$ is
The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(3 - x)}}{{\ln (|x|\; - 2)}}$ is