$f(x,\;y) = \frac{1}{{x + y}}$ is a homogeneous function of degree
$1$
$-1$
$2$
$-2$
Let $S=\{1,2,3,4,5,6\}$. Then the number of oneone functions $f: S \rightarrow P(S)$, where $P(S)$ denote the power set of $S$, such that $f(n) \subset f(m)$ where $n < m$ is $..................$
Statement $1$ : If $A$ and $B$ be two sets having $p$ and $q$ elements respectively, where $q > p$. Then the total number of functions from set $A$ to set $B$ is $q^P$.
Statement $2$ : The total number of selections of $p$ different objects out of $q$ objects is ${}^q{C_p}$.
If $f(x)$ and $g(x)$ are functions satisfying $f(g(x))$ = $x^3 + 3x^2 + 3x + 4$ $f(x)$ = $log^3x + 3$, then slope of the tangent to the curve $y = g(x)$ at $x = \ -1$ is
If $\theta$ is small $\&$ positive number then which of the following is/are correct ?
The graph of the function $y = f(x)$ is symmetrical about the line $x = 2$, then