- Home
- Standard 11
- Physics
1.Units, Dimensions and Measurement
medium
$1$ $joule$ of energy is to be converted into new system of units in which length is measured in $10\, m$, mass in $10\, kg$ and time in $1$ $minute$ then numerical value of $1\, J$ in the new system is
A$36 \times 10^{-4}$
B$36 \times 10^{-3}$
C$36 \times 10^{-2}$
D$36 \times 10^{-1}$
Solution
$1 \mathrm{J}=2 \quad$ New system
$\mathrm{n}_{2}=\mathrm{n}_{1}\left[\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}\right]\left[\frac{\mathrm{L}_{1}}{\mathrm{L}_{2}}\right]^{2}\left[\frac{\mathrm{T}_{1}}{\mathrm{T}_{2}}\right]^{-2}$
$\quad=1\left[\frac{\mathrm{kg}}{10 \mathrm{kg}}\right]\left[\frac{\mathrm{m}}{10 \mathrm{m}}\right]^{2}\left[\frac{10}{60}\right]^{-2}$
$\quad=\left(\frac{1}{10}\right)^{1} \times\left(\frac{1}{10}\right)^{2} \times(60)^{2}=36 \times 10^{-1}$
$\mathrm{n}_{2}=\mathrm{n}_{1}\left[\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}\right]\left[\frac{\mathrm{L}_{1}}{\mathrm{L}_{2}}\right]^{2}\left[\frac{\mathrm{T}_{1}}{\mathrm{T}_{2}}\right]^{-2}$
$\quad=1\left[\frac{\mathrm{kg}}{10 \mathrm{kg}}\right]\left[\frac{\mathrm{m}}{10 \mathrm{m}}\right]^{2}\left[\frac{10}{60}\right]^{-2}$
$\quad=\left(\frac{1}{10}\right)^{1} \times\left(\frac{1}{10}\right)^{2} \times(60)^{2}=36 \times 10^{-1}$
Standard 11
Physics
Similar Questions
Match the following two coloumns
Column $-I$ | Column $-II$ |
$(A)$ Electrical resistance | $(p)$ $M{L^3}{T^{ – 3}}{A^{ – 2}}$ |
$(B)$ Electrical potential | $(q)$ $M{L^2}{T^{ – 3}}{A^{ – 2}}$ |
$(C)$ Specific resistance | $(r)$ $M{L^2}{T^{ – 3}}{A^{ – 1}}$ |
$(D)$ Specific conductance | $(s)$ None of these |
medium