The dimensions of $\frac{\alpha}{\beta}$ in the equation $F=\frac{\alpha-t^2}{\beta v^2}$, where $F$ is the force, $v$ is velocity and $t$ is time, is ..........

  • A

    $\left[ MLT ^{-1}\right]$

  • B

    $\left[ ML ^{-1} T ^{-2}\right]$

  • C

    $\left[M L^3 T^{-4}\right]$

  • D

    $\left[ ML ^2 T ^{-4}\right]$

Similar Questions

The mass of a liquid flowing per second per unit area of cross section of a tube is proportional to $P^x$ and $v^y$ , where $P$ is the pressure difference and $v$ is the velocity. Then, the relation between $x$ and $y$ is

If electronic charge $e$, electron mass $m$, speed of light in vacuum $c$ and Planck 's constant $h$ are taken as fundamental quantities, the permeability of vacuum $\mu _0$ can be expressed in units of

  • [JEE MAIN 2015]

$A$ and $B$ possess unequal dimensional formula then following operation is not possible in any case:-

The dimensions of the area $A$ of a black hole can be written in terms of the universal gravitational constant $G$, its mass $M$ and the speed of light $c$ as $A=G^\alpha M^\beta c^\gamma$. Here,

  • [KVPY 2015]

A liquid drop placed on a horizontal plane has a near spherical shape (slightly flattened due to gravity). Let $R$ be the radius of its largest horizontal section. A small disturbance causes the drop to vibrate with frequency $v$ about its equilibrium shape. By dimensional analysis, the ratio $\frac{v}{\sqrt{\sigma / \rho R^3}}$ can be (Here, $\sigma$ is surface tension, $\rho$ is density, $g$ is acceleration due to gravity and $k$ is an arbitrary dimensionless constant)

  • [KVPY 2012]