$\overrightarrow A $ and $\overrightarrow B $ are two vectors given by $\overrightarrow A  = 2\widehat i + 3\widehat j$ and $\overrightarrow B  = \widehat i + \widehat j$. The magnitude of  the component (projection) of $\overrightarrow A$ on $\overrightarrow  B$ is

  • A

    $5 / \sqrt 2$

  • B

    $3 / \sqrt 2$

  • C

    $7 / \sqrt 2$

  • D

    $1 / \sqrt 2$

Similar Questions

The area of the parallelogram having diagonals ${3\hat i}\,\, + \,\,\hat j\,\, - \,\,2\hat k$ and $\hat i\,\, - \,\,3\hat j\,\, + \;\,4\hat k$ is

Two vectors $P = 2\hat i + b\hat j + 2\hat k$ and $Q = \hat i + \hat j + \hat k$ will be parallel if $b=$ ........

Given $\left| {{\vec A_1}} \right| = 2,\,\left| {{\vec A_2}} \right| = 3$ and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 3$.  Find the value or $\left| {\left( {{{\vec A}_1} + 2{{\vec A}_2}} \right) \times \left( {3{{\vec A}_1} - 4{{\vec A}_2}} \right)} \right|$

Projection of vector $\vec A$ on $\vec B$ is

If $\vec A,\vec B$ and $\vec C$ are vectors having a unit magnitude. If $\vec A + \vec B + \vec C = \vec 0$ then $\vec A.\vec B + \vec B.\vec C + \vec C.\vec A$ will be