If for two vector $\overrightarrow A $ and $\overrightarrow B $, sum $(\overrightarrow A + \overrightarrow B )$ is perpendicular to the difference $(\overrightarrow A - \overrightarrow B )$. The ratio of their magnitude is

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    None of these

Similar Questions

The components of $\vec a = 2\hat i + 3\hat j$ along the direction of vector $\left( {\hat i + \hat j} \right)$ is

If $\overrightarrow A \times \overrightarrow B=\overrightarrow B \times \overrightarrow A$ then the angle between $\overrightarrow A$ and $\overrightarrow B$ is

  • [AIEEE 2004]

Two vector $A$ and $B$ have equal magnitudes. Then the vector $\mathop A\limits^ \to + \mathop B\limits^ \to $ is perpendicular to

The vector sum of two forces is perpendicular to their vector differences. In that case, the forces

  • [AIPMT 2003]

Two vectors $P = 2\hat i + b\hat j + 2\hat k$ and $Q = \hat i + \hat j + \hat k$ will be parallel if $b=$ ........