- Home
- Standard 11
- Physics
If for two vector $\overrightarrow A $ and $\overrightarrow B $, sum $(\overrightarrow A + \overrightarrow B )$ is perpendicular to the difference $(\overrightarrow A - \overrightarrow B )$. The ratio of their magnitude is
$1$
$2$
$3$
None of these
Solution
(a) $(\overrightarrow A + \overrightarrow B )$ is perpendicular to $(\overrightarrow A – \overrightarrow B )$. Thus
$(\overrightarrow A + \overrightarrow B )$.$(\overrightarrow A – \overrightarrow B ) = 0$
or ${A^2} + \overrightarrow B \,.\,\overrightarrow A – \overrightarrow A \,.\,\overrightarrow B – {B^2} = 0\,$
Because of commutative property of dot product
$\overrightarrow A .\overrightarrow B = \overrightarrow B .\overrightarrow A $
$\therefore $${A^2} – {B^2} = 0$ or $A = B$
Thus the ratio of magnitudes $A/B = 1$