If $\overrightarrow{ F }=2 \hat{ i }+\hat{ j }-\hat{ k }$ and $\overrightarrow{ r }=3 \hat{ i }+2 \hat{ j }-2 \hat{ k }$, then the scalar and vector products of $\overrightarrow{ F }$ and $\overrightarrow{ r }$ have the magnitudes respectively as

  • [NEET 2022]
  • A

    $5, \sqrt{3}$

  • B

    $4, \sqrt{5}$

  • C

    $10, \sqrt{2}$

  • D

    $10,2$

Similar Questions

For any two vectors $\overrightarrow A $ and $\overrightarrow B $, if $\overrightarrow A \,.\,\overrightarrow B = \,\,|\overrightarrow A \times \overrightarrow B |,$ the magnitude of $\overrightarrow C = \overrightarrow A + \overrightarrow B $ is equal to

Explain the geometrical interpretation of scalar product of two vectors.

The two vectors $\vec A = -2\widehat i + \widehat j + 3\widehat k$ and $\vec B = 7\widehat i + 5\widehat j + 3\widehat k$ are :-

The condition $( a \cdot b )^2=a^2 b^2$ is satisfied when

If $\overrightarrow A = 3\hat i + \hat j + 2\hat k$ and $\overrightarrow B = 2\hat i - 2\hat j + 4\hat k$ then value of $|\overrightarrow A \times \overrightarrow B |\,$ will be