${\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2}$ is equal to
$2\left( {\left| {{z_1}} \right| + \left| {{z_2}} \right|} \right)$
$2\left( {{{\left| {{z_1}} \right|}^2} + {{\left| {{z_2}} \right|}^2}} \right)$
$\left| {{z_1}} \right|\left| {{z_2}} \right|$
${{{\left| {{z_1}} \right|}^2} + {{\left| {{z_2}} \right|}^2}}$
Find the conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$.
Let $\mathrm{z}$ be a complex number such that $|\mathrm{z}+2|=1$ and $\operatorname{Im}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$. Then the value of $|\operatorname{Re}(\overline{z+2})|$ is :
If ${z_1}$ and ${z_2}$ are two complex numbers satisfying the equation $\left| \frac{z_1 +z_2}{z_1 - z_2} \right|=1$, then $\frac{{{z_1}}}{{{z_2}}}$ is a number which is
Let $z$ and $w$ be the two non-zero complex numbers such that $|z|\, = \,|w|$ and $arg\,z + arg\,w = \pi $. Then $z$ is equal to
If $z_1, z_2 $ are any two complex numbers, then $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ is equal to