If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if
$z = 0$
${\mathop{\rm Re}\nolimits} (z) = 0$
${\mathop{\rm Im}\nolimits} \,(z) = 0$
None of these
Let $z$ be a complex number, then the equation ${z^4} + z + 2 = 0$ cannot have a root, such that
The modulus and amplitude of $\frac{{1 + 2i}}{{1 - {{(1 - i)}^2}}}$ are
For the complex number $z$, one from $z + \bar z$ and $z\,\bar z$ is
Let $\bar{z}$ denote the complex conjugate of a complex number $z$. If $z$ is a non-zero complex number for which both real and imaginary parts of
$(\bar{z})^2+\frac{1}{z^2}$
are integers, then which of the following is/are possible value($s$) of $|z|$ ?
If $Arg(z)$ denotes principal argument of a complex number $z$, then the value of expression $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ is