$'Rn$' decays into $'Po'$ by emitting $a -$ particle with half life of $4\, days$. A sample contains $6.4 \times 10^{10}$ atoms of $Rn$. After $12\, days$, the number of atoms of $'Rn'$ left in the sample will be
$3.2 \times {10^{10}}$
$0.53 \times {10^{10}}$
$2.1 \times {10^{10}}$
$0.8 \times {10^{10}}$
The activity of a freshly prepared radioactive sample is $10^{10}$ disintegrations per second, whose mean life is $10^9 s$. The mass of an atom of this radioisotope is $10^{-25} kg$. The mass (in $mg$ ) of the radioactive sample is
The half life of a radioactive isotope $X$ is $50$ years. It decays to another element $Y$ which is stable. The two elements $X$ and $Y$ were found to be in the ratio of $1 : 15$ in a sample of a given rock. The age of the rock was estimated to be..........$years$
In a sample of radioactive material, what percentage of the initial number of active nuclei will decay during one mean life .......... $\%$
At a given instant, say $t = 0,$ two radioactive substances $A$ and $B$ have equal activates. The ratio $\frac{{{R_B}}}{{{R_A}}}$ of their activities. The ratio $\frac{{{R_B}}}{{{R_A}}}$ of their activates after time $t$ itself decays with time $t$ as $e^{-3t}.$ If the half-life of $A$ is $ln2,$ the half-life of $B$ is
A freshly prepared sample of a radioisotope of half-life $1386 \ s$ has activity $10^3$ disintegrations per second. Given that In $2=0.693$, the fraction of the initial number of nuclei (expressed in nearest integer percentage) that will decay in the first $80 \ s$ after preparation of the sample is :