- Home
- Standard 11
- Physics
$ABCDE$ is a channel in the vertical plane, part $BCDE$ being circular with radius $r$ . A block is released from $A$ and slides without friction and without rolling. The block will complete the loop if $h$ is

$h \leq \frac{3}{2}r$
$h \geq \frac{5}{2}r$
$h \geq \frac{3}{2}r$
$h \leq \frac{5}{2}r$
Solution
Loss in $PE$ between $A$ and $D=$ gain in $KE$ between $A$ and $D$
${\mathop{\rm mg}\nolimits} ({\rm{h}} – 2{\rm{r}}) = \frac{1}{2}{\rm{m}}\left( {{{\rm{v}}^2} – 0} \right)\quad \left( {{{\rm{K}}_{\rm{A}}} = 0} \right)$
$\mathrm{v}^{2} =2 \mathrm{g}(\mathrm{h}-2 \mathrm{r})$ …..$(i)$
If the block is to complete the loop path then at $D$
$\frac{\mathrm{mv}^{2}}{\mathrm{r}} \geq \mathrm{mg}$
$\mathrm{v}^{2} \geq \mathrm{rg}$ …..$(ii)$
From Eqs. $(i)$ and $(ii)$
$2g(h – 2r) \ge rg$
$h \geq \frac{5}{2} r$