A particle is made to move from the origin in three spells of equal distances, first along the $x-$ axis, second parallel to $y-$ axis and third parallel to $z-$ axis. One of the forces acting on it is has constant magnitude of $50\,N$ and always acts along the direction of motion. Work done by this force in the three spells of motion are equal and total work done in all the three spells is $300\,J$. The final coordinates of the particle will be

  • A

    $(2,\, 2,\, 2)\,m$

  • B

    $(4,\, 4,\, 4)\,m$

  • C

    $(6,\, 6,\, 6)\,m$

  • D

    $(10,\, 10,\, 10)\,m$

Similar Questions

If the potential energy of a gas molecule is $U = \frac{M}{{{r^6}}} - \frac{N}{{{r^{12}}}},M$ and $N$ being positive constants, then the potential energy at equilibrium must be

If a spring extends by $x$ on loading then energy stored by the spring is ($T$ is tension in spring, $K$ is spring constant)

A body of mass $m= 10^{-2} \;kg$ is moving in a medium and experiences a frictional force $F= -kv^2$ Its intial speed is $v_0= 10$ $ms^{-1}$ If, after $10\ s$, its energy is $\frac{1}{8}$ $mv_0^2$ the value of $k$ will be

The variation of force $F$ acting on a body moving along $x$-axis varies with its position $(x)$ as shown in figure The body is in stable equilibrium state at

A 3.628 kg freight car moving along a horizontal rail road spur track at $7.2\; km/hour$ strikes a bumper whose coil springs experiences a maximum compression of $30 \;cm$ in stopping the car. The elastic potential energy of the springs at the instant when they are compressed $15\; cm$ is [2013]

(a) $12.1 \times 10^4\;J$ (b) $121  \times 10^4\;J$ (c) $1.21 \times 10^4\;J$ (d) $1.21  \times 10^4\;J$