$Assertion$ : The error in the measurement of radius of the sphere is $0.3\%$. The permissible error in its surface area is $0.6\%$
$Reason$ : The permissible error is calculated by the formula $\frac{{\Delta A}}{A} = \frac{{4\Delta r}}{r}$
If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
If the Assertion is correct but Reason is incorrect.
If both the Assertion and Reason are incorrect.
We measure the period of oscillation of a simple pendulum. In successive measurements, the readings turn out to be $2.63 \;s , 2.56 \;s , 2.42\; s , 2.71 \;s$ and $2.80 \;s$. Calculate the absolute errors, relative error or percentage error.
Error in the measurement of radius of a sphere is $0.2\%$. The error in the calculated value of its volume is ......... $\%$
The initial and final temperatures of water as recorded by an observer are $(40.6 \pm 0.2)^{\circ} C$ and $(78.9 \pm 0.3)^{\circ} C .$ Calculate the rise in temperature with proper error limits.
In an experiment to determine the acceleration due to gravity $g$, the formula used for the time period of a periodic motion is $T=2 \pi \sqrt{\frac{7(R-r)}{5 g}}$. The values of $R$ and $r$ are measured to be $(60 \pm 1) \mathrm{mm}$ and $(10 \pm 1) \mathrm{mm}$, respectively. In five successive measurements, the time period is found to be $0.52 \mathrm{~s}, 0.56 \mathrm{~s}, 0.57 \mathrm{~s}, 0.54 \mathrm{~s}$ and $0.59 \mathrm{~s}$. The least count of the watch used for the measurement of time period is $0.01 \mathrm{~s}$. Which of the following statement($s$) is(are) true?
($A$) The error in the measurement of $r$ is $10 \%$
($B$) The error in the measurement of $T$ is $3.57 \%$
($C$) The error in the measurement of $T$ is $2 \%$
($D$) The error in the determined value of $g$ is $11 \%$