$Assertion :$ Falling raindrops acquire a terminal velocity.
$Reason :$ A constant force in the direction of motion and a velocity dependent force opposite to the direction of motion, always result in the acquisition of terminal velocity.

  • [AIIMS 2011]
  • A

    If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.

  • B

    If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.

  • C

    If the Assertion is correct but Reason is incorrect.

  • D

    If both the Assertion and Reason are incorrect.

Similar Questions

A water drop of radius $1\,\mu m$ falls in a situation where the effect of buoyant force is negligible. Coefficient of viscosity of air is $1.8 \times 10^{-5}\,Nsm ^{-2}$ and its density is negligible as compared to that of water $10^{6}\,gm ^{-3}$. Terminal velocity of the water drop is________ $\times 10^{-6}\,ms ^{-1}$

(Take acceleration due to gravity $=10\,ms ^{-2}$ )

  • [JEE MAIN 2022]

As the temperature of water increases, its viscosity

Give two uses of Stoke’s law.

There is a $1\, mm$ thick layer of glycerine between a flat plate of area $100\, cm^2$ and a big plate. If the coefficient of viscosity of glycerine is $1.0\, kg\, (m-s)$, then ....... $N$ force is required to move the plate with a velocity of $7\, cm/s$ .

The average mass of rain drops is $3.0\times10^{-5}\, kg$ and their avarage terminal velocity is $9\, m/s$. Calculate the energy transferred by rain to each square metre of the surface at a place which receives $100\, cm$ of rain in a year

  • [JEE MAIN 2014]