$(a)$ Two insulated charged copper spheres $A$ and $B$ have their centres separated by a distance of $50 \;cm$. What is the mutual force of electrostatic repulsion if the charge on each is $6.5 \times 10^{-7}\; C?$ The radii of $A$ and $B$ are negligible compared to the distance of separation.

$(b)$ What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ Charge on sphere $A , q _{ A }=6.5 \times 10^{-7}\, C$

Charge on sphere $B , q _{ B }=6.5 \times 10^{-7} \,C$

Distance between the spheres, $r=50 \,cm =0.5 \,m$ Force of repulsion between the two spheres

$F=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{A} q_{B}}{r^{2}}$

Where, $\varepsilon_{0}=$ Permittivity of free space and $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \,Nm ^{2} \,C ^{-2}$

Therefore,

$F =\frac{9 \times 10^{9} \times\left(6.5 \times 10^{-7}\right)^{2}}{(0.5)^{2}}$

$=1.52 \times 10^{-2} \,N$

Therefore, the force between the two spheres is $1.52 \times 10^{-2} \,N$

$(b)$ After doubling the charge, Charge on sphere $A , q _{ A }=1.3 \times 10^{-6} \,C$

Charge on sphere $B , q _{ B }=1.3 \times 10^{-6} \,C$

The distance between the spheres is halved.

$\therefore r=\frac{0.5}{2}=0.25\, m$

Force of repulsion between the two spheres,

$F=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{A} q_{B}}{r^{2}}$$=\frac{9 \times 10^{9} \times 1.3 \times 10^{-6} \times 1.3 \times 10^{-6}}{(0.25)^{2}}$

$=16 \times 1.52 \times 10^{-2}$

$=0.243 \,N$

Therefore, the force between the two spheres is $0.243 \,N$.

Similar Questions

Three points charges are placed at the corners of an equilateral triangle of side $L$ as shown in the figure.

Figure represents a crystal unit of cesium chloride, $\mathrm{CsCl}$. The cesium atoms, represented by open circles are situated at the corners of a cube of side $0.40\,\mathrm{nm}$, whereas a $\mathrm{Cl}$ atom is situated at the centre of the cube. The $\mathrm{Cs}$ atoms are deficient in one electron while the $\mathrm{Cl}$ atom carries an excess electron.

$(i)$ What is the net electric field on the $\mathrm{Cl}$ atom due to eight $\mathrm{Cs}$ atoms ?

$(ii)$ Suppose that the $\mathrm{Cs}$ atom at the corner $A$ is missing. What is the net force now on the $\mathrm{Cl}$ atom due to seven remaining $\mathrm{Cs}$ atoms ?

Explain the superposition principle for static electric forces and write its general equation.

Two fixed charges $4\,Q$ (positive) and $Q$ (negative) are located at $A$ and $B$, the distance $AB$ being $3$ $m$.

Four point $+ve$ charges of same magnitude $(Q)$ are placed at four corners of a rigid square frame as shown in figure. The plane of the frame is perpendicular to $Z$ axis. If a $-ve$ point charge is placed at a distance $z$ away from the above frame $(z<< L)$ then

  • [AIIMS 2005]