There are two metallic spheres of same radii but one is solid and the other is hollow, then
Solid sphere can be given more charge
Hollow sphere can be given more charge
They can be charged equally (maximum)
None of the above
Two point charges placed at a certain distance $r$ in air exert a force $F$ on each other. Then the distance $r'$ at which these charges will exert the same force in a medium of dielectric constant $k$ is given by
Two identical pendulum $A$ and $B$ are suspended from the same point. The bobs are given positive charges, with $A$ having more charge than $B$ . They diverge and reach at equilibrium, with $A$ and $B$ making angles $\theta _1$ and $\theta _2$ with the vertical respectively, Then
In a medium, the force of attraction between two point charges, distance $d$ apart, is $F$. What distance apart should these point charges be kept in the same medium, so that the force between them becomes $16\, F$ ?
In hydrogen like system the ratio of coulombian force and gravitational force between an electron and a proton is in the order of:
Point charge $q$ moves from point $P$ to point $S$ along the path $PQRS$ (figure shown) in a uniform electric field $E$ pointing coparallel to the positive direction of the $X - $axis. The coordinates of the points $P,\,Q,\,R$ and $S$ are $(a,\,b,\,0),\;(2a,\,0,\,0),\;(a,\, - b,\,0)$ and $(0,\,0,\,0)$ respectively. The work done by the field in the above process is given by the expression