Gujarati
Hindi
7. MOTION
hard

$(a)$ Derive second equation of motion $S=u t+\frac{1}{2} a t^{2}$ graphically where the symbols have their usual meanings.

$(b)$ A car accelerates uniformly from $18\, km h ^{-1}$ to $36\, km h^{-1}$ in $5$ seconds. Calculate the acceleration and the distance covered by the car in that time.

Option A
Option B
Option C
Option D

Solution

$(a)$ The area under the graph is the area of the rectangle $OACD$ plus the area of the triangle $ABC$ on top of it as shown in figure. The rectangle has a height $u$ and a length $t$. This area is the distance travelled by the object.

Hence, $S=u t+\frac{1}{2} \times t \times(v-u)$ $….(1)$

But from the expression $v=u+a t,$ we have

at $=v-u$. Substituting in equation $(1),$ we have

$S=u t+\frac{1}{2}(a t) t=u t+\frac{1}{2} a t^{2}$ $…(2)$

$(b)$ Given $u=18 km h ^{-1}=5 m s ^{-1}$

$v=36 km h ^{-1}=10 m s ^{-1}, t=5 s$

Using $v=u+a t,$ we have

$a=v-\frac{u}{t}=\frac{(10-5)}{5}=1 m s ^{-2}$

Also,

$S=u t+\frac{1}{2} a t^{2}=5 \times 5+\frac{1}{2} \times 1 \times(5)^{2}$

$=37.5 m$

Standard 9
Science

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.