The numerical ratio of displacement to distance for a moving object is
The graph given below is the distance$-$time graph of an object.
$(i)$ Find the speed of the object during first four seconds of its journey.
$(ii)$ How long was it stationary ?
$(iii)$ Does it represent a real situation ? Justify your answer.
A cyclist driving at $36\, km h^{-1}$ stops his cycle in $2\, s$ by the application of brakes. Calculate $(i)$ retardation $(ii)$ distance covered during the application of brakes.
$(a)$ What is acceleration ? Write its $SI$ unit.
$(b)$ Draw velocity-time graph, when an object has
$(i)$ uniformly accelerated velocity
$(ii)$ uniformly retarded velocity.
The average time taken by a normal person to react to an emergency is one$-$fifteenth of a second and is called the 'reaction time'. If a bus is moving with a velocity of $60\, km h^{-1}$ and its driver sees a child running across the road, how much distance would. the bus had moved before he could press the brakes ? The reaction time of the people increases when they are intoxicated. How much distance had the bus moved if the reaction time of the driver were $\frac{1}{2}\, s$ under the influence of alcohol ?