$K _{ a_1,}, K _{ a_2 }$ and $K _{ a_3}$ are the respective ionization constants for the following reactions $(a), (b),$ and $(c)$.
$(a)$ $H _{2} C _{2} O _{4} \rightleftharpoons H ^{+}+ HC _{2} O _{4}^{-}$
$(b)$ $HC _{2} O _{4}^{-} \rightleftharpoons H ^{+}+ HC _{2} O _{4}^{2-}$
$(c)$ $H _{2} C _{2} O _{4} \rightleftharpoons 2 H ^{+}+ C _{2} O _{4}^{2-}$
The relationship between $K_{a_{1}}, K_{ a _{2}}$ and $K_{ a _{3}}$ is given as
$K_{ a _{3}}= K _{ a _{1}}+ K _{ a _{2}}$
$K_{a_{a_{3}}}=K_{a_{1}}-K_{a_{2_{2}}}$
$K _{ a _{1}}= K _{ z _{1}} / K _{ s _{2}}$
$K _{ a _{3}}= K _{ a _{1}} \times K _{ s _{2}}$
Ionisation constant of $CH_3COOH$ is $1.7 \times 10^{-5}$ and concentration of $H^+$ ions is $3.4 \times 10^{-4}$. Then find out initial concentration of $CH_3COOH$ Molecules
The hydrogen ion concentration of a $0.006\,M$ benzoic acid solution is $({K_a} = 6 \times {10^{ - 5}})$
The $ pH$ of $ 0.1$ $M$ acetic acid is $3$, the dissociation constant of acid will be
Given
$(i)$ $\begin{gathered}
HCN\left( {aq} \right) + {H_2}O\left( l \right) \rightleftharpoons {H_3}{O^ + }\left( {aq} \right) + C{N^ - }\left( {aq} \right) \hfill \\
{K_a} = 6.2 \times {10^{ - 10}} \hfill \\
\end{gathered} $
$(ii)$ $\begin{gathered}
C{N^ - }\left( {aq} \right) + {H_2}O\left( l \right) \rightleftharpoons HCN\left( {aq} \right) + O{H^ - }\left( {aq} \right) \hfill \\
{K_b} = 1.6 \times {10^{ - 5}} \hfill \\
\end{gathered} $
These equilibria show the following order of the relative base strength
The dissociation constant of an acid $HA$ is $1 \times {10^{ - 5}}$. The $pH$ of $0.1$ molar solution of the acid will be