The degree of dissociation $(\alpha )$ of $PCl_5$ obeying the equilibrium;  is $PC{l_5}\, \rightleftharpoons \,PC{l_3}\, + \,C{l_2}$ related to the pressure at equlibrium by

  • A

    $\alpha \, \propto \,P$

  • B

    $\alpha \, \propto \,\frac{1}{{\sqrt P }}$

  • C

    $\alpha \, \propto \,\frac{1}{{{P^2}}}$

  • D

    $\alpha \, \propto \,\frac{1}{{{P^4}}}$

Similar Questions

The solution of $N{a_2}C{O_3}$ has $pH$

A $0.1\,N $ solution of an acid at room temperature has a degree of ionisation $ 0.1$ . The concentration of $O{H^ - }$ would be

At $25\,^oC$, the dissociation constant of $CH_3COOH$ and $NH_4OH$ in aqueous solution are almost the same. The $pH$ of a solution $0.01\, N\, CH_3COOH$ is $4.0$ at $25\,^oC$. The $pH$ of $0.01\, N\, NH_4OH$ solution at the same temperature would be

The molar conductivity of a solution of a weak acid $HX (0.01\ M )$ is $10$ times smaller than the molar conductivity of a solution of a weak acid $HY (0.10 \ M )$. If $\lambda_{ X }^0 \approx \lambda_{ Y ^{-}}^0$, the difference in their $pK _{ a }$ values, $pK _{ a }( HX )- pK _{ a }( HY )$, is (consider degree of ionization of both acids to be $\ll 1$ )

  • [IIT 2015]

What is the $pH$ of $0.001 \,M$ aniline solution? The ionization constant of aniline can be taken from Table . Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.

Base $K _{ b }$
Dimethylamine, $\left( CH _{3}\right)_{2} NH$ $5.4 \times 10^{-4}$
Triethylamine, $\left( C _{2} H _{5}\right)_{3} N$ $6.45 \times 10^{-5}$
Ammonia, $NH _{3}$ or $NH _{4} OH$ $1.77 \times 10^{-5}$
Quinine, ( $A$ plant product) $1.10 \times 10^{-6}$
Pyridine, $C _{5} H _{5} N$ $1.77 \times 10^{-9}$
Aniline, $C _{6} H _{5} NH _{2}$ $4.27 \times 10^{-10}$
Urea, $CO \left( NH _{2}\right)_{2}$ $1.3 \times 10^{-14}$