$37$ Rutherford equals
$1$ milli curie
$1$ milli bacquerel
$1$ micro bacquerel
$1$ micro curie
In a radioactive sample, ${ }_{10}^a K$ nuclei either decay into stable ${ }_{20}^{* 0} Ca$ nuclei with decay constant $4.5 \times 10^{-10}$ per year or into stable ${ }_{18}^{40}$ Ar muclei with decay constant $0.5 \times 10^{-10}$ per year. Given that in this sample all the stable ${ }_{20}^{\infty 0} Ca$ and ${ }_{15}^{20} Ar$ nuclei are produced by the ${ }_{19}^{* 0} K$ muclei only. In time $t \times 10^{\circ}$ years, if the ratio of the sum of stable ${ }_{30}^{40} Ca$ and ${ }_{15} \operatorname{An}$ nuclei to the radioactive ${ }_{19} K$ muclei is $99$ , the ralue of $t$ will be : [Given $\ln 10=2.3]$
Starting with a sample of pure ${}^{66}Cu$, $7/8$ of it decays into $Zn$ in $15\ minutes$ . The it decays into $Zn$ in $15\ minutes$ . The corresponding half-life is ................ $minutes$
A radioactive decay chain starts from $_{93}N{p^{237}}$ and produces $_{90}T{h^{229}}$ by successive emissions. The emitted particles can be
At time $t=0$, a container has $N_{0}$ radioactive atoms with a decay constant $\lambda$. In addition, $c$ numbers of atoms of the same type are being added to the container per unit time. How many atoms of this type are there at $t=T$ ?
Two radioactive materials $A$ and $B$ have decay constants $25 \lambda$ and $16 \lambda$ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of $B$ to that of $A$ will be "$e$" after a time $\frac{1}{a \lambda}$. The value of $a$ is $......$