Two radioactive nuclei $A$ and $B$ both convert into a stable nucleus $C$. At time $t = 0$ nuclei of $A$ are $4N_0$ and that of $B$ are $N_0$. Half life of $A$ is $1\, min$ and that of $B$ is $2\, min$. initially number of nuclei of $C$ are zero. At what time rate of disintegrations of $A$ and $B$ are equal .......... $min$

  • A

    $4$

  • B

    $6$

  • C

    $8$

  • D

    $2$

Similar Questions

At a given instant, say $t = 0,$ two radioactive substances $A$ and $B$ have equal activates. The ratio $\frac{{{R_B}}}{{{R_A}}}$ of their activities. The ratio $\frac{{{R_B}}}{{{R_A}}}$ of their activates after time $t$ itself decays with time $t$ as $e^{-3t}.$ If the half-life of $A$ is $ln2,$ the half-life of $B$ is

  • [JEE MAIN 2019]

At time $t=0$, a container has $N_{0}$ radioactive atoms with a decay constant $\lambda$. In addition, $c$ numbers of atoms of the same type are being added to the container per unit time. How many atoms of this type are there at $t=T$ ?

  • [KVPY 2010]

Which of the following Statements is correct?

  • [AIEEE 2012]

Radioactive nuclei that are injected into a patient collect at certain sites within its body, undergoing radioactive decay and emitting electromagnetic radiation. These radiations can then be recorded by a detector. This procedure provides an important diagnostic tool called

  • [AIIMS 2003]

A radioactive substance emits