$R$ is a relation from $\{11, 12, 13\}$ to $\{8, 10, 12\}$ defined by $y = x - 3$. Then ${R^{ - 1}}$ is

  • A

    $\{(8, 11), (10, 13)\}$

  • B

    $\{(11, 18), (13, 10)\}$

  • C

    $\{(10, 13), (8, 11)\}$

  • D

    None of these

Similar Questions

Let $A=\{2,3,6,8,9,11\}$ and $B=\{1,4,5,10,15\}$

Let $\mathrm{R}$ be a relation on $\mathrm{A} \times \mathrm{B}$ define by $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$ if and only if $3 \mathrm{ad}-7 \mathrm{bc}$ is an even integer. Then the relation $\mathrm{R}$ is

  • [JEE MAIN 2024]

Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation $\mathrm{R}$ in the set $\mathrm{Z}$ of all integers defined as $\mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}-\mathrm{y}$ is an integer $\}$

If $A = \left\{ {x \in {z^ + }\,:x < 10} \right.$& and $x$ is a multiple of $3$ or $4\}$, where $z^+$ is the set of positive integers, then the total number of symmetric relations on $A$ is

  • [AIEEE 2012]

Let $A$ be a set consisting of $10$ elements. The number of non-empty relations from $A$ to $A$ that are reflexive but not symmetric is

  • [KVPY 2020]

Let a relation $R$ on $\mathbb{N} \times \mathbb{N}$ be defined as : $\left(\mathrm{x}_1, \mathrm{y}_1\right) \mathrm{R}\left(\mathrm{x}_2, \mathrm{y}_2\right)$ if and only if $\mathrm{x}_1 \leq \mathrm{x}_2$ or $\mathrm{y}_1 \leq \mathrm{y}_2$

Consider the two statements :

($I$) $\mathrm{R}$ is reflexive but not symmetric.

($II$) $\mathrm{R}$ is transitive

Then which one of the following is true?

  • [JEE MAIN 2024]