$R$ એ $\{11, 12, 13\}$ થી $\{8, 10, 12\}$ પર $y = x - 3$ દ્વારા વ્યાખ્યાયિત હોય તો ${R^{ - 1}}$ મેળવો.

  • A

    $\{(8, 11), (10, 13)\}$

  • B

    $\{(11, 18), (13, 10)\}$

  • C

    $\{(10, 13), (8, 11)\}$

  • D

    એકપણ નહીં.

Similar Questions

ગણ $\{1,2,3,4,5,6\}$ પર વ્યાખ્યાયિત સંબંધ $R =\{(a, b): b=a+1\}$ એ સ્વવાચક, સંમિત કે પરંપરિત સંબંધ છે કે નહિ તે ચકાસો.

ધારોકે $A=\{0,3,4,6,7,8,9,10\}$ અને $R$ એ $A$ પર વ્યાખ્યાયિત એવો સંબંધ છે કે જેથી $R=\{(x, y) \in A \times A: x-y$ એ એકી ધન પૂણાંક છે અથવા $x-y=2\}$. સંબંધ $R$ સંમિત સંબંધ બને તે માટે તેમાં ઉમેરાતા ન્યૂનતમ ધટકોની સંખ્યા $........$ છે.

  • [JEE MAIN 2023]

સાબિત કરો કે કૉલેજના ગ્રંથાલયનાં બધાં જ પુસ્તકોના ગણ $A$ પર વ્યાખ્યાયિત સંબંધ $R =\{(x, y): x $ અને $y$ નાં પૃષ્ઠોની સંખ્યા સમાન છે. $\} $ એ સામ્ય સંબંધ છે.

જો $A = \{1, 2, 3\}, B = \{1, 3, 5\}.$ જો સંંબંધ $R$ એ  $A$ થી $B$ પર છે કે જેથી $R =\{(1, 3), (2, 5), (3, 3)\}$. તો ${R^{ - 1}}$ મેળવો.

જો $L$ એ સમતલમાં આવેલ બધીજ રેખા નો ગણ દર્શાવે છે. જો સંબંધ $R =$ {$\alpha R\beta  \Leftrightarrow \alpha  \bot \beta ,\,\alpha ,\,\beta  \in L$} દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . . .