${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $
$0$
$1$
$\sqrt 2 $
$1/\sqrt 2 $
If $x = {2^{1/3}} - {2^{ - 1/3}},$ then $2{x^3} + 6x = $
The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is
The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has
If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $
$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $