${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $
${(x/4)^3}$
${(4x)^3}$
$8{x^3}$
None of these
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are
Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$
${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $
If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),} $ then
If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=