${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $
$5\sqrt 2 $
$3\sqrt 2 $
$2\sqrt 3 $
$0$
If $x = {2^{1/3}} - {2^{ - 1/3}},$ then $2{x^3} + 6x = $
If ${x^y} = {y^x},$then ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ where $k = $
If ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ then $m =$
If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $
If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$