Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$
${\log _9}(9/\sqrt 8 )$
${\log _{\left( {9/2} \right)}}(9/\sqrt 8 )$
${\log _e}(9/\sqrt 8 )$
None of these
${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $
The greatest number among $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17} $ is
If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then
If $x = \sqrt 7 + \sqrt 3 $ and $xy = 4,$then ${x^4} + {y^4}=$
The cube root of $9\sqrt 3 + 11\sqrt 2 $ is