Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$

  • A

    ${\log _9}(9/\sqrt 8 )$

  • B

    ${\log _{\left( {9/2} \right)}}(9/\sqrt 8 )$

  • C

    ${\log _e}(9/\sqrt 8 )$

  • D

    None of these

Similar Questions

If ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$then $\sum {(1/x) = } $

If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=

${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $

The greatest number among $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17}  $ is

The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is