Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$
${\log _9}(9/\sqrt 8 )$
${\log _{\left( {9/2} \right)}}(9/\sqrt 8 )$
${\log _e}(9/\sqrt 8 )$
None of these
If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$
Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.
${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $
The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has
Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$