4-1.Complex numbers
medium

$\frac{{(\cos x + i\sin x)(\cos y + i\sin y)}}{{(\cot u + i)(1 + i\tan v)}}$ ને $A + iB$ સ્વરૂપમાં લાવો.

A

$\sin u\cos v\,[\cos (x + y - u - v) + i\sin (x + y - u - v)]$

B

$\sin u\cos v\,[\cos (x + y + u + v) + i\sin (x + y + u + v)]$

C

$\sin u\cos v\,[\cos (x + y + u + v) - i\sin (x + y + u + v)]$

D

એકપણ નહીં.

Solution

(a)$L.H.S.$ $ = \frac{{(\cos x + i\sin x)(\cos y + i\sin y)}}{{(\cos u + i\sin u)(\cos v + i\sin v)}}$$\sin u\cos v$
$ = \sin u\cos v[\cos (x + y – u – v) + i\sin (x + y – u – v)]$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.