- Home
- Standard 11
- Mathematics
$\alpha ,\;\beta $ are the roots of the equation ${x^2} - 3x + a = 0$ and $\gamma ,\;\delta $ are the roots of the equation ${x^2} - 12x + b = 0$. If $\alpha ,\;\beta ,\;\gamma ,\;\delta $ form an increasing $G.P.$, then $(a,\;b) = $
$(3, 12)$
$(12, 3)$
$(2, 32)$
$(4, 16)$
Solution
(c) Since $\alpha ,\;\beta ,\;\gamma ,\;\delta $ form an increasing $G.P.$,
so $\alpha \delta = \beta \gamma $where $\alpha < \beta < \gamma < \delta $.
On solving ${x^2} – 3x + a = 0$,
we get $x = \frac{1}{2}(3 \pm \sqrt {9 – 4a} )$.
Also $\alpha < \beta $.
Hence $\alpha = \frac{1}{2}(3 – \sqrt {9 – 4a} ),\;$
$\beta = \frac{1}{2}(3 + \sqrt {9 – 4a} )$
Similarly from ${x^2} – 12x + b = 0$, we get
$\gamma = \frac{1}{2}(12 – \sqrt {144 – 4b} ),\;$
$\delta = \frac{1}{2}(12 + \sqrt {144 – 4b} )$
Substituting these values of $\alpha ,\;\beta ,\;\gamma ,\;\delta $ in $\alpha \delta = \beta \gamma $
and simplifying, we get $(a,\;b) = (2,\;32)$.
Trick : Check the alternates; only $(c)$ satisfies the condition.