$\alpha ,\;\beta $ समीकरण ${x^2} - 3x + a = 0$ के मूल हैं और $\gamma ,\;\delta $ समीकरण ${x^2} - 12x + b = 0$ के मूल हैं। यदि $\alpha ,\;\beta ,\;\gamma ,\;\delta $ एक वर्धमान गुणोत्तर श्रेणी बनाते हों, तो $(a,\;b) = $
$(3, 12)$
$(12, 3)$
$(2, 32)$
$(4, 16)$
यदि $y = x - {x^2} + {x^3} - {x^4} + ......\infty $, तो $x$ का मान होगा
अनन्त गुणोत्तर श्रेणी का प्रथम पद $x$ और उसका योग $5$ है, तब
यदि $y - x$ तथा $y - z$ के बीच का हरात्मक माध्य $2(y - a)$ है, तब $x - a,\;y - a,\;z - a$ हैं
एक अनंत गुणोत्तर श्रेणी के पदों का योग $3$ है तथा पदों के वगोर्ं का योग भी $3$ है, तब श्रेणी का प्रथम पद व सार्वानुपात क्रमश: होंगे
मान लें $M=2^{30}-2^{15}+1$ एवं $M^2$ को आधार $2$ पर व्यक्त किया जाता है. $M^2$ के आधार $2$ के इस निरूपण में कितने $1$ की संख्या है?