If $a,\,b,\,c$ are in $G.P.$, then
$a({b^2} + {a^2}) = c({b^2} + {c^2})$
$a({b^2} + {c^2}) = c({a^2} + {b^2})$
${a^2}(b + c) = {c^2}(a + b)$
None of these
Given $a_1,a_2,a_3.....$ form an increasing geometric progression with common ratio $r$ such that $log_8a_1 + log_8a_2 +.....+ log_8a_{12} = 2014,$ then the number of ordered pairs of integers $(a_1, r)$ is equal to
The numbers $(\sqrt 2 + 1),\;1,\;(\sqrt 2 - 1)$ will be in
Given a $G.P.$ with $a=729$ and $7^{\text {th }}$ term $64,$ determine $S_{7}$
If $x,\;y,\;z$ are in $G.P.$ and ${a^x} = {b^y} = {c^z}$, then
If $n$ geometric means between $a$ and $b$ be ${G_1},\;{G_2},\;.....$${G_n}$ and a geometric mean be $G$, then the true relation is