${2^{\sin \theta }} + {2^{\cos \theta }}$ is greater than
$\frac{1}{2}$
$\sqrt 2 $
${2^{\frac{1}{{\sqrt 2 }}}}$
${2^{\left( {1 - \,\frac{1}{{\sqrt 2 }}} \right)}}$
If $a,\;b,\;c$ be in $A.P.$ and $b,\;c,\;d$ be in $H.P.$, then
If ${A_1},\;{A_2};{G_1},\;{G_2}$ and ${H_1},\;{H_2}$ be $AM's,\;GM's$ and $HM's$ between two quantities, then the value of $\frac{{{G_1}{G_2}}}{{{H_1}{H_2}}}$ is
Let $p =99$ and $q =101$. Define $p _1=\log \left(\frac{ p + q }{2}\right)$ and $q _1=\frac{1}{2}(\log p+\log q)$ and $p _2=\log \left(\frac{ p _1+ q _1}{2}\right), \quad q _2=\frac{1}{2}\left(\log p _1+\log q _1\right).$ Where all logarithms have base $10$ . Then
If the arithmetic mean of two numbers $a$ and $b, a>b>0$, is five times their geometric mean, then $\frac{{a + b}}{{a - b}}$ is equal to
Let the first three terms $2, p$ and $q$, with $q \neq 2$, of a $G.P.$ be respectively the $7^{\text {th }}, 8^{\text {th }}$ and $13^{\text {th }}$ terms of an $A.P.$ If the $5^{\text {th }}$ term of the $G.P.$ is the $\mathrm{n}^{\text {th }}$ term of the $A.P.$, then $\mathrm{n}$ is equal to