If the arithmetic mean of two numbers $a$ and $b, a>b>0$, is five times their geometric mean, then $\frac{{a + b}}{{a - b}}$ is equal to
$\frac{{\sqrt 6 }}{2}$
$\frac{3{\sqrt 2 }}{4}$
$\frac{{7\sqrt 3 }}{12}$
$\frac{{5\sqrt 6 }}{12}$
Let $E$ = $x^{2017} + y^{2017} + z^{2017} -2017xyz$ (where $x, y, z \geq 0$ ), then the least value of $E$ is
Let the range of the function
$f(x)=\frac{1}{2+\sin 3 x+\cos 3 x}, x \in \operatorname{IR} \text { be }[a, b] .$ If $\alpha$ and $\beta$ are respectively the $A.M.$ and the $G.M.$ of a and $b$, then $\frac{\alpha}{\beta}$ is equal to :
Let $3, a, b, c$ be in $A.P.$ and $3, a-1, b+1, c+9$ be in $G.P.$ Then, the arithmetic mean of $a, b$ and $c$ is :
Let ${a_1},\;{a_2},.........{a_{10}}$ be in $A.P.$ and ${h_1},\;{h_2},........{h_{10}}$ be in $H.P.$ If ${a_1} = {h_1} = 2$ and ${a_{10}} = {h_{10}} = 3$, then ${a_4}{h_7}$ is
If $A.M.$ of two terms is $9$ and $H.M.$ is $36$, then $G.M.$ will be