$^n{C_r}\,{ \div ^n}{C_{r - 1}} = $
$\frac{{n - r}}{r}$
$\frac{{n + r - 1}}{r}$
$\frac{{n - r + 1}}{r}$
$\frac{{n - r - 1}}{r}$
If $2 \times {}^n{C_5} = 9\,\, \times \,\,{}^{n - 2}{C_5}$, then the value of $n$ will be
Let $\left(\begin{array}{l}n \\ k\end{array}\right)$ denotes ${ }^{n} C_{k}$ and $\left[\begin{array}{l} n \\ k \end{array}\right]=\left\{\begin{array}{cc}\left(\begin{array}{c} n \\ k \end{array}\right), & \text { if } 0 \leq k \leq n \\ 0, & \text { otherwise }\end{array}\right.$
If $A_{k}=\sum_{i=0}^{9}\left(\begin{array}{l}9 \\ i\end{array}\right)\left[\begin{array}{c}12 \\ 12-k+i\end{array}\right]+\sum_{i=0}^{8}\left(\begin{array}{c}8 \\ i\end{array}\right)\left[\begin{array}{c}13 \\ 13-k+i\end{array}\right]$
and $A_{4}-A_{3}=190 \mathrm{p}$, then $p$ is equal to :
In how many ways can the letters of the word $\mathrm{ASSASSINATION} $ be arranged so that all the $\mathrm{S}$ 's are together?
In how many ways a team of $11$ players can be formed out of $25$ players, if $6$ out of them are always to be included and $5$ are always to be excluded
For $2 \le r \le n,\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) + 2\,\left( \begin{array}{l}\,\,n\\r - 1\end{array} \right)$ $ + \left( {\begin{array}{*{20}{c}}n\\{r - 2}\end{array}} \right)$ is equal to