${n^n}{\left( {\frac{{n + 1}}{2}} \right)^{2n}}$ is
Less than ${\left( {\frac{{n + 1}}{2}} \right)^3}$
Greater than ${\left( {\frac{{n + 1}}{2}} \right)^3}$
Greater than ${(n!)^3}$
$(b)$ and $(c)$ both
If $f(y) = 1 - (y - 1) + {(y - 1)^2} - {(y - 1)^{^3}} + ... - {(y - 1)^{17}},$ then the coefficient of $y^2$ in it is
The value of $4 \{^nC_1 + 4 . ^nC_2 + 4^2 . ^nC_3 + ...... + 4^{n - 1}\}$ is :
$\frac{{{C_1}}}{{{C_0}}} + 2\frac{{{C_2}}}{{{C_1}}} + 3\frac{{{C_3}}}{{{C_2}}} + .... + 15\frac{{{C_{15}}}}{{{C_{14}}}} = $
$(1 + x) (1 + x + x^2) (1 + x + x^2 + x^3) ...... (1 + x + x^2 + ...... + x^{100})$ when written in the ascending power of $x$ then the highest exponent of $x$ is ______ .
Suppose $\sum \limits_{ r =0}^{2023} r ^{20023} C _{ r }=2023 \times \alpha \times 2^{2022}$. Then the value of $\alpha$ is $............$