$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right| = $

  • A

    $1$

  • B

    $0$

  • C

    $x$

  • D

    $xy$

Similar Questions

समीकरण  $\left| {\,\begin{array}{*{20}{c}}x&2&{ - 1}\\2&5&x\\{ - 1}&2&x\end{array}\,} \right| = 0$ के हल होंगे

एक ऐसा क्रमित युग्म $(\alpha, \beta)$ जिसके लिये रैखिक समीकरण निकाय $(1+\alpha) x +\beta y + z =2$, $\alpha x +(1+\beta) y + z =3$, $\alpha x +\beta y +2 z =2$ का एकमात्र एक हल है

  • [JEE MAIN 2019]

$\left| {\,\begin{array}{*{20}{c}}{\sin x}&{\cos x}&{\cos x}\\{\cos x}&{\sin x}&{\cos x}\\{\cos x}&{\cos x}&{\sin x}\end{array}\,} \right| = 0$ के विभिन्न वास्तविक हलों की संख्या होगी $\left( {- \frac{\pi }{4} \le x \le \frac{\pi }{4}} \right)$

  • [IIT 2001]

यदि $A = \left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,B = \left| {\,\begin{array}{*{20}{c}}1&1&1\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,C = \left| {\,\begin{array}{*{20}{c}}a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,$ तो निम्न में से कौन सा सम्बन्ध सत्य है

$\left| {\,\begin{array}{*{20}{c}}{{1^2}}&{{2^2}}&{{3^2}}\\{{2^2}}&{{3^2}}&{{4^2}}\\{{3^2}}&{{4^2}}&{{5^2}}\end{array}\,} \right|$=