3 and 4 .Determinants and Matrices
hard

$\left| {\,\begin{array}{*{20}{c}}{a - b - c}&{2a}&{2a}\\{2b}&{b - c - a}&{2b}\\{2c}&{2c}&{c - a - b}\end{array}\,} \right| = $

A

${(a + b + c)^2}$

B

${(a + b + c)^3}$

C

$(a + b + c)(ab + bc + ca)$

D

એકપણ નહી.

Solution

(b) $\left| {\,\begin{array}{*{20}{c}}{a – b – c}&{2a}&{2a}\\{2b}&{b – c – a}&{2b}\\{2c}&{2c}&{c – a – b}\end{array}\,} \right|$

= $\left| {\,\begin{array}{*{20}{c}}{ – \Sigma a}&0&{2a}\\{\Sigma a}&{ – \Sigma a}&{2b}\\0&{\Sigma a}&{c – a – b}\end{array}\,} \right|$ , $\left( \begin{array}{l}{C_1} \to {C_1} – {C_2}\\{C_2} \to {C_2} – {C_3}\end{array} \right)$

= ${(\Sigma a)^2}\,\left| {\,\begin{array}{*{20}{c}}{ – 1}&0&{2a}\\1&{ – 1}&{2b}\\1&1&{c – a – b}\end{array}\,} \right| = {(\Sigma a)^3}$,                          (on expansion)

= ${(a + b + c)^3}$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.