$\Delta=\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$ માટે ગુણધર્મ $1$ ચકાસો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Solution Expanding the determinant along first row, we have

$\Delta  = 2\left| {\begin{array}{*{20}{r}}
  0&4 \\ 
  5&{ - 7} 
\end{array}} \right| - ( - 3)\left| {\begin{array}{*{20}{r}}
  6&4 \\ 
  1&{ - 7} 
\end{array}} \right| + 5\left| {\begin{array}{*{20}{r}}
  6&0 \\ 
  1&5 
\end{array}} \right|$

$ = 2(0 - 20) + 3( - 42 - 4) + 5(30 - 0)$

$ =  - 40 - 138 + 150 =  - 28$

By interchanging rows and columns, we get

$\Delta_{1}=\left|\begin{array}{rrr}2 & 6 & 1 \\ -3 & 0 & 5 \\ 5 & 4 & -7\end{array}\right| \quad$ (Expanding along first column)

$=2\left|\begin{array}{rr}
0 & 5 \\
4 & -7
\end{array}\right|-(-3)\left|\begin{array}{rr}
6 & 1 \\
4 & -7
\end{array}\right|+5\left|\begin{array}{ll}
6 & 1 \\
0 & 5
\end{array}\right|$

${ = 2(0 - 20) + 3( - 42 - 4) + 5(30 - 0)}$

${ =  - 40 - 138 + 150 =  - 28}$

Clearly $\Delta=\Delta_{1}$

Hence, Property $1$ is verified.

Similar Questions

જો ${a^2} + {b^2} + {c^2} = - 2$ અને $f(x) = \left| {\begin{array}{*{20}{c}}{1 + {a^2}x}&{(1 + {b^2})x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{1 + {b^2}x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{(1 + {b^2})x}&{1 + {c^2}x}\end{array}} \right|$ તો $f(x)$ એ . . . . બહુપદી ઘાતાંક છે .

  • [AIEEE 2005]

નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$

$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&b&{{b^2}}\\1&c&{{c^2}}\end{array}\,} \right| = $

નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી અને વિસ્તરણ કર્યા સિવાય સાબિત કરો : $\left|\begin{array}{lll}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|=0$

નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી  સાબિત કરો કે, $\left|\begin{array}{lll}x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x),$ $p$ અચળ છે.