$\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right| = $
${a^3} + {b^3} + {c^3} - 3abc$
${a^3} + {b^3} + {c^3} + 3abc$
$(a + b + c)(a - b)(b - c)(c - a)$
એકપણ નહી.
જો $\alpha ,\beta \ne 0$ અને $f\left( n \right) = {\alpha ^n} + {\beta ^n}$ તથા $\left| {\begin{array}{*{20}{c}}3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}\\{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}\\{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}\end{array}} \right|\; = K{\left( {1 - \alpha } \right)^2}$ ${\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}$ ,તો $K=$ . . . . . .
જો $p + q + r = 0 = a + b + c$, તો $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|= . . . $
જો $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
{\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)} \\
{\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)} \\
{\sin \left( {\alpha + \beta } \right)}&{\sin \left( {\beta + \gamma } \right)}&{\sin \left( {\gamma + \alpha } \right)}
\end{array}} \right|$ અને $f(10) = 10$ તો $f(\pi)$ મેળવો.
સમીકરણ સહતિ $x+y+z=\alpha$ ; $\alpha x+2 \alpha y+3 z=-1$ ; $x+3 \alpha y+5 z=4$ સુસંગત થાય તેવી $\alpha$ ની કિંમતોની સંખ્યા ............ છે.
સમીકરણ સંહિતા $x+y+z=\beta $ , $5x-y+\alpha z=10$ , $2x+3y-z=6$ ના અનન્ય ઉકેલ ......... પર આધારિત છે