સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ ના બીજ મેળવો.
$1, 2$
$-1, 2$
$1, -2$
$-1, -2$
જો $f(\theta ) =\left| {\begin{array}{*{20}{c}}
1&{\cos {\mkern 1mu} \theta }&1\\
{ - \sin {\mkern 1mu} \theta }&1&{ - \cos {\mkern 1mu} \theta }\\
{ - 1}&{\sin {\mkern 1mu} \theta }&1
\end{array}} \right|$ અને $A$ અને $B$ એ અનુક્રમે $f(\theta )$ ની મહતમ અને ન્યૂનતમ કિમતો હોય તો $(A , B)$ મેળવો.
નીચે આપેલાં શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ શોધો : $(2,7),(1,1),(10,8)$
જો સુરેખ સમીકરણ સંહતી $2 x+3 y-z=-2$ ; $x+y+z=4$ ; $x-y+|\lambda| z=4 \lambda-4$ (જ્યાં $\lambda \in R$ ) ને ઉંકેલ ન હોય, તો..........
જો $A = \left[ {\begin{array}{*{20}{c}}
1&1\\
1&1
\end{array}} \right]$ અને $\det ({A^n} - I) = 1 - {\lambda ^n}\,,\,n \in N$ તો $\lambda $ મેળવો.
જો $S$ એ $k$ એ બધીજ વાસ્તવિક કિમંતો નો ગણ છે કે જેથી રેખાઓની સહંતિ $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ એ એકાકી ઉકેલ ધરાવે છે તો $S$ એ . . . .