$\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$,which of the following is a factor for the above determinant

  • A

    $x - (a + b + c)$

  • B

    $x + (a + b + c)$

  • C

    $a + b + c$

  • D

    $ - (a + b + c)$

Similar Questions

If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&1&1\\2&{x + 2}&2\\3&3&{x + 3}\end{array}\,} \right| = 0,$ then $x$ is

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{{\omega ^2}}&\omega \\1&\omega &{{\omega ^2}}\end{array}\,} \right| = $

The following system of linear equations  $7 x+6 y-2 z=0$ ; $3 x+4 y+2 z=0$ ; ${x}-2{y}-6{z}=0,$ has

  • [JEE MAIN 2020]

If $\left| {\,\begin{array}{*{20}{c}}{x - 1}&3&0\\2&{x - 3}&4\\3&5&6\end{array}\,} \right| = 0$, then $x =$

If $x = cy + bz,\,\,y = az + cx,\,\,z = bx + ay$ (where $x, y, z $ are not all zero) have a solution other than $x = 0$, $y = 0$, $z = 0$ then $a, b$  and $ c $ are connected by the relation

  • [IIT 1978]