सारणिक $\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$,का गुणनखण्ड होगा
$x - (a + b + c)$
$x + (a + b + c)$
$a + b + c$
$ - (a + b + c)$
सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
सारणिकों का प्रयोग करके $A (1,3)$ और $B (0,0)$ को जोड़ने वाली रेखा का समीकरण ज्ञात कीजिए और $k$ का मान ज्ञात कीजिए यदि एक बिंदु $D (k, 0)$ इस प्रकार है कि $\Delta\, ABD$ का क्षेत्रफल $3$ वर्ग इकाई है।
धनात्मक संख्यायें $x,y$ और $z $ के लिये सारणिक $\left| {\,\begin{array}{*{20}{c}}1&{{{\log }_x}y}&{{{\log }_x}z}\\{{{\log }_y}x}&1&{{{\log }_y}z}\\{{{\log }_z}x}&{{{\log }_z}y}&1\end{array}\,} \right|$ का आंकिक मान है
उन पूर्णाकों $x$ की संख्या क्या होगी जो $-3 x^4+\operatorname{det}\left[\begin{array}{ccc}1 & x & x^2 \\ 1 & x^2 & x^4 \\ 1 & x^3 & x^6\end{array}\right]=0$ को संतुष्ट करते हैं
निम्नलिखित में दिए गए शीर्ष बिंदुओं वाले त्रिभुजों का क्षेत्रफल ज्ञात कीजिए।:$(-2,-3),(3,2),(-1,-8)$