Prove that the determinant $\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$ is independent of $\theta$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\Delta=\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$

$=x\left(x^{2}-1\right)-\sin \theta(-x \sin \theta-\cos \theta)+\cos \theta(-\sin \theta+x \cos \theta)$

$=x^{3}-x+x \sin ^{2} \theta+\sin \theta \cos \theta-\sin \theta \cos \theta+x \cos ^{2} \theta$

$=x^{3}-x+x\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$

$=x^{3}-x+x$

$\left.=x^{3} \quad \text { (Independent of } \theta\right)$

Hence, $\Delta$ is independent of $\theta$

Similar Questions

If $\left| {\begin{array}{*{20}{c}}
  {^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\ 
  {^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\ 
  {^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}} 
\end{array}} \right| = 0$ then $r$ is equal to 

The value of a for which the system of equations ; $a^3x + (a +1)^3 y + (a + 2)^3 \, z = 0$ ,$ax + (a + 1) y + (a + 2)\, z = 0$ & $x + y + z = 0$ has a non-zero solution is :

If the following system of linear equations

$2 x+y+z=5$

$x-y+z=3$

$x+y+a z=b$

has no solution, then :

  • [JEE MAIN 2021]

Value of $\left| {\begin{array}{*{20}{c}}
  0&{x - y}&{x - z} \\ 
  {y - x}&0&{y - z} \\ 
  {z - x}&{z - y}&0 
\end{array}} \right|$ is

The existence of unique solution of the system of equations,  $x+y+z=\beta $ , $5x-y+\alpha z=10$ , $2x+3y-z=6$ depends on