Prove that the determinant $\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$ is independent of $\theta$
$\Delta=\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$
$=x\left(x^{2}-1\right)-\sin \theta(-x \sin \theta-\cos \theta)+\cos \theta(-\sin \theta+x \cos \theta)$
$=x^{3}-x+x \sin ^{2} \theta+\sin \theta \cos \theta-\sin \theta \cos \theta+x \cos ^{2} \theta$
$=x^{3}-x+x\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=x^{3}-x+x$
$\left.=x^{3} \quad \text { (Independent of } \theta\right)$
Hence, $\Delta$ is independent of $\theta$
If $\left| {\begin{array}{*{20}{c}}
{^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\
{^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\
{^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}}
\end{array}} \right| = 0$ then $r$ is equal to
The value of a for which the system of equations ; $a^3x + (a +1)^3 y + (a + 2)^3 \, z = 0$ ,$ax + (a + 1) y + (a + 2)\, z = 0$ & $x + y + z = 0$ has a non-zero solution is :
If the following system of linear equations
$2 x+y+z=5$
$x-y+z=3$
$x+y+a z=b$
has no solution, then :
Value of $\left| {\begin{array}{*{20}{c}}
0&{x - y}&{x - z} \\
{y - x}&0&{y - z} \\
{z - x}&{z - y}&0
\end{array}} \right|$ is
The existence of unique solution of the system of equations, $x+y+z=\beta $ , $5x-y+\alpha z=10$ , $2x+3y-z=6$ depends on