Evaluate $\left|\begin{array}{rr}2 & 4 \\ -1 & 2\end{array}\right|$
$8$
$2$
$5$
$6$
We have $\left|\begin{array}{cc}2 & 4 \\ -1 & 2\end{array}\right|=2(2)-4(-1)=4+4=8$
If $a \ne p,b \ne q,c \ne r$ and $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ =$ 0$, then $\frac{p}{{p – a}} + \frac{q}{{q – b}} + \frac{r}{{r – c}} = $
Evaluate the determinants
$\left|\begin{array}{ccc} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{array}\right|$
The cubic $\left| {\begin{array}{*{20}{c}} 0&{a – x}&{b – x} \\ { – a – x}&0&{c – x} \\ { – b – x}&{ – c – x}&0 \end{array}} \right| = 0$ has a reperated root in $x$ then,
If the system of equations $2x + 3y – z = 0$, $x + ky – 2z = 0$ and $2x – y + z = 0$ has a non -trivial solution $(x, y, z)$, then $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + k$ is equal to
Confusing about what to choose? Our team will schedule a demo shortly.