Let $[.]$ , $ \{.\} $ and $sgn$$(.)$ denotes greatest integer function, fractional part function and signum function respectively, then value of determinant
$\left| {\begin{array}{*{20}{c}}
{\left[ \pi \right]}&{amp(1 + i\sqrt 3 )}&1 \\
1&0&2 \\
{\operatorname{sgn} ({{\cot }^{ - 1}}x)}&1&{\{ \pi \} }
\end{array}} \right|$ is-
The values of $\lambda$ and $\mu$ for which the system of linear equations
$x+y+z=2$
$x+2 y+3 z=5$
$x+3 y+\lambda z=\mu$
has infinitely many solutions are, respectively
If $p{\lambda ^4} + q{\lambda ^3} + r{\lambda ^2} + s\lambda + t = $ $\left| {\,\begin{array}{*{20}{c}}{{\lambda ^2} + 3\lambda }&{\lambda - 1}&{\lambda + 3}\\{\lambda + 1}&{2 - \lambda }&{\lambda - 4}\\{\lambda - 3}&{\lambda + 4}&{3\lambda }\end{array}\,} \right|,$ the value of $t$ is
Show that points $A(a, b+c), B(b, c+a), C(c, a+b)$ are collinear
If the system of equations $ax + y + z = 0 , x + by + z = 0 \, \& \, x + y + cz = 0$ $(a, b, c \ne 1)$ has a non-trivial solution, then the value of $\frac{1}{{1\, - \,a}}\,\, + \,\,\frac{1}{{1\, - \,b}}\,\, + \,\,\frac{1}{{1\, - \,c}}$ is :