- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
$A,B$ are n-rowed square matrices such that $AB = O$ and $B$ is non-singular. Then
A
$A \ne O$
B
$A = O$
C
$A = I$
D
None of these
Solution
(b) Since $|B| \ne 0 \Rightarrow {B^{ – 1}}$exists, $AB = 0$
==> $(AB){B^{ – 1}} = O{B^{ – 1}} \Rightarrow \,\,A(B{B^{ – 1}}) = O$
==> $AI = O \Rightarrow A = O$.
Standard 12
Mathematics
Similar Questions
medium