3 and 4 .Determinants and Matrices
medium

Find $X$ and $Y$, if

$X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$ and $X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$

A

$X = \left[ {\begin{array}{*{20}{l}}
  5&0 \\ 
  1&4 
\end{array}} \right]$,    $Y=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$

B

$X = \left[ {\begin{array}{*{20}{l}}
  5&0 \\ 
  1&4 
\end{array}} \right]$,    $Y=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$

C

$X = \left[ {\begin{array}{*{20}{l}}
  5&0 \\ 
  1&4 
\end{array}} \right]$,    $Y=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$

D

$X = \left[ {\begin{array}{*{20}{l}}
  5&0 \\ 
  1&4 
\end{array}} \right]$,    $Y=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$

Solution

$X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$  ………… $(1)$

$X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$  ………… $(2)$

Adding equations $(1)$ and $(2)$, we get:

$2 X=$ $\left[ {\begin{array}{*{20}{l}}
  7&0 \\ 
  2&5 
\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}
  3&0 \\ 
  0&3 
\end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{l}}
  {7 + 3}&{0 + 0} \\ 
  {2 + 0}&{5 + 3} 
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
  {10}&0 \\ 
  2&8 
\end{array}} \right]$

$\therefore \,\,X = \frac{1}{2}\left[ {\begin{array}{*{20}{l}}
  {10}&0 \\ 
  2&8 
\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}
  5&0 \\ 
  1&4 
\end{array}} \right]$

Now, $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$

$\Rightarrow\left[\begin{array}{ll}5 & 0 \\ 1 & 4\end{array}\right]+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$

$\Rightarrow Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]-\left[\begin{array}{ll}5 & 0 \\ 1 & 4\end{array}\right]$

$\Rightarrow Y=\left[\begin{array}{ll}7-5 & 0-0 \\ 2-1 & 5-4\end{array}\right]$

$\therefore Y=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.