- Home
- Standard 12
- Mathematics
Find $X$ and $Y$, if
$X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$ and $X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
$X = \left[ {\begin{array}{*{20}{l}}
5&0 \\
1&4
\end{array}} \right]$, $Y=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$
$X = \left[ {\begin{array}{*{20}{l}}
5&0 \\
1&4
\end{array}} \right]$, $Y=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$
$X = \left[ {\begin{array}{*{20}{l}}
5&0 \\
1&4
\end{array}} \right]$, $Y=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$
$X = \left[ {\begin{array}{*{20}{l}}
5&0 \\
1&4
\end{array}} \right]$, $Y=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$
Solution
$X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$ ………… $(1)$
$X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$ ………… $(2)$
Adding equations $(1)$ and $(2)$, we get:
$2 X=$ $\left[ {\begin{array}{*{20}{l}}
7&0 \\
2&5
\end{array}} \right] + \left[ {\begin{array}{*{20}{l}}
3&0 \\
0&3
\end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{l}}
{7 + 3}&{0 + 0} \\
{2 + 0}&{5 + 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{10}&0 \\
2&8
\end{array}} \right]$
$\therefore \,\,X = \frac{1}{2}\left[ {\begin{array}{*{20}{l}}
{10}&0 \\
2&8
\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}
5&0 \\
1&4
\end{array}} \right]$
Now, $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}5 & 0 \\ 1 & 4\end{array}\right]+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$
$\Rightarrow Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]-\left[\begin{array}{ll}5 & 0 \\ 1 & 4\end{array}\right]$
$\Rightarrow Y=\left[\begin{array}{ll}7-5 & 0-0 \\ 2-1 & 5-4\end{array}\right]$
$\therefore Y=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$